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This paper presents a study of controlling steady-state vibrations of a cantilevered skew
aluminum plate using saturation phenomena due to higher-order internal resonances. PZT
(lead zirconate titanate) patches are used as control actuators and sensors. Linear second
order controllers are designed to couple with the plate via di!erent orders of non-linear
terms to establish energy bridges between the plate and controllers. Each linear
second-order controller is designed to have a 1 : 2 or 1 : 3 or 1 : 4 internal resonance with one
of the plate's vibration modes and hence is able to exchange energy with the plate around the
speci"c modal frequency. Because of non-linearities and internal resonances, di!erent orders
of saturation phenomena exist and are used to suppress modal vibrations. Several non-linear
vibration absorbers are designed based on the saturation phenomena and are analyzed to
show their feasibility and e$ciency. Perturbation analysis, direct numerical integration, and
experiments are performed to validate these non-linear vibration absorbers.

( 2000 Academic Press
1. INTRODUCTION

For a weakly non-linear system with quadratic non-linearities and 1 : 2 internal resonance
between two linear natural frequencies, a saturation phenomenon exists [1]. This 1 : 2
internal resonance and the corresponding 1 : 2 saturation phenomenon have been used to
design non-linear controllers [2}8]. These control techniques use a linear second-order
controller coupled to a linear vibration system via quadratic terms. These quadratic terms
establish a channel for energy exchange between the system and the controller, resulting in
a beating phenomenon in the response of the combined system. For controlling transient
vibrations, the beating phenomenon is used to channel energy from the system to the
controller and then the energy is dissipated by adding dampings to the controller before it
has the opportunity to revert back to the system [7]. For controlling steady-state
vibrations, the quadratic term on the system results in a resisting force against the external
excitation force to suppress vibrations [7]. Because there is no decision making required in
such saturation controllers, it does not need a computer to compute the required control
force for control actuators. Hence, saturation controllers can be built using simple o!-shelf
electronic circuits [3, 6] and can be used to regulate dynamical systems to prevent severe
resonant vibrations [2].
0022-460X/00/300799#19 $35.00/0 ( 2000 Academic Press
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This work is to design new non-linear vibration absorbers using higher-order internal
resonances and saturation phenomena to suppress the steady-state vibrations of
a cantilevered skew aluminum plate. Higher-order internal resonances are introduced by
using quadratic, cubic, and/or quartic terms to couple the controller with the plate. PZT
patches are used for control actuation and sensing, and displacement and velocity feedback
signals are considered. Perturbation analysis is used to predict the dynamic response, and
direct numerical integration and experiments are performed to verify the analytical
prediction and to validate the designs.

2. 1 : 2 NON-LINEAR VIBRATION ABSORBER

The 1 : 2 non-linear vibration absorber for suppressing structural vibrations can be
described by the following two ordinary di!erential equations [1, 7]:
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where u
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denotes the response of a second-order controller, u
1

is the natural angular
frequency of the controller, f
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is the damping ratio of the controller, u
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of the modal co-ordinates of a structure, u
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are positive gain constants, F is the amplitude of the

external excitation force, X is the external excitation frequency, u
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is close to 2u
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close to u
2
, t is the time, and ( ) ),d( )/dt. The structural vibration is assumed to be

linear, but the structure becomes part of a larger non-linear system when it is coupled
with the controller. Because the controller is responsible for the desirable non-linear
characteristics of the larger system, non-linear tailoring of the system is relatively
straightforward and easy.

To test di!erent non-linear vibration absorbers, we built a digital control system that
consists of SIMULINK modelling softwares and a dSPACE DS1102 controller systemt in
a pentium computer. This system is described in detail in reference [7]. Figure 1 shows the
geometry and dimensions of the cantilevered skew aluminum plate under study with three
integrated PZT (lead zirconate titanate) patches and a 1 : 2 non-linear vibration absorber
for controlling the "rst-mode vibration using this digital control system. The aluminum
plate has Young's modulus 10]106 psi, the Poisson ratio 0)3, mass density
2)54]10~4 lb )s2/in4, and thickness 0)122 in. The PZT patches are one QP10N and two
QP10W QuickPack PZT actuators purchased from ACX.A The size of QP10N in
2A]1A]0)015A, and its piezo-wafer size is 1)81A]0)81A]0)010A. The size of QP10W is
2A]1)5A]0)015A, and its piezo-wafer size is 1)81A]1)31A]0)010A. One of the two QP10W
patches is used for control actuation, and the other QP10W is placed on the backside but
the same location of the plate and is used to provide the assumed external excitation. The
QP10N patch is used as a sensor.

To know the dynamic characteristics of the plate we perform "nite element analyses using
an in-house "nite element code GESA [9], and we also use a Polytec PI PSV-200 Scanning
Laser Vibrometer (SLV) to obtain frequency response functions (FRFs), natural
frequencies, and operational de#ection shapes (ODSs) [10]. The "rst three natural
frequencies are obtained to be 13)4, 66)4, and 77)1 Hz, and the "rst three modal damping
sThe MathWorks, Inc. Natick, MA.
tdSPACE digital processing and control engineering GmbH, Paderborn, Germany.
AActive Control eXperts, Inc., Cambridge, MA.



Figure 1. The cantilevered skew aluminium plate with a 1 : 2 non-linear vibration absorber for controlling the
"rst-mode vibration.
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ratios are 0)306, 0)085 and 0)047%. Because of non-rectangular geometry, all modes are
bending-torsional vibrations, even the "rst mode.

The g
12

in equation (1) is exactly the same as the gain constant G12 in the DS1102
controller in Figure 1. On the other hand, the actual excitation voltage FK * cos(Xt) to the
external excitation PZT actuator and the actual excitation voltage G11 * u1 * u1 * 20 to the
controlling PZT actuator are indirect excitation voltages to u

2
. When u
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is not coupled with
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Then g
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can be obtained as

g
11
"G11]10]20"200]G11, (3)

where the 20 accounts for the use of a power ampli"er. An input voltage to the A/D
channels of the dSPACE board is scaled by a factor of 1/10. Moreover, before a signal is sent
to the D/A channels of the dSPACE board, it is multiplied by a factor of 10. The 10 in
equation (3) accounts for this fact. However, it has been observed that, if PZT patches are
connected to the input channels of the DSP board, the scaling factor is not exactly equal to
1/10. If the voltage generated by a PZT patch is measured using an oscilloscope, the value is
di!erent from the value measured using the DSP board by a factor other than 10. This
phenomenon exists only when the PZT patch is directly connected to the DSP board. To
solve this problem requires a signal conditioning circuit designed to separate the RC circuit
of the PZT sensor from the DSP board, which is beyond the scope of this research. Instead
of designing a signal conditioner we obtain the scaling factor appropriate for the PZT patch
when it is directly connected to the DSP board.

We excite the structure with an excitation amplitude FK "10 V at the "rst modal
frequency. We then measure the response amplitude of the PZT sensor using an
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oscilloscope and the DSP board to "nd the scaling factor to be 10)85 for the "rst-mode
vibration. Moreover, the amplitude of the output voltage of the PZT sensor is measured to
be a

2
"0)186]10)85"2)02 V, when FK "10 V and the excitation frequency X is equal to

the "rst natural frequency. From equation (2) we obtain that F"86)71 V/s2 and
F/FK "8)67 1/s2. Hence, it follows from Figure 1 that the system equations for the control of
the "rst-mode steady-state vibration are
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u
1

is the controller voltage inside the DS1102 controller, u
2

is the sensor voltage inside the
DS1102, and 10)85u

2
is the actual sensor voltage. In equation (4), f

1
"0 is used. Moreover,

we use the fact that the PZT patch for external excitation and the PZT patch for control
have the same size and are located at the same position and hence they have the same F/FK .
The same procedure can be used to derive the system equations for the control of other
modes.

Numerical and experimental results show that the 1 : 2 non-linear vibration absorber
works well and it is robust and e$cient in controlling steady-state vibrations around
resonance areas of structures [7, 10]. Here we are interested in using the uncovered working
mechanism of the 1 : 2 non-linear vibration absorber to design and verify new non-linear
vibration absorbers using higher-order non-linearities and the corresponding internal
resonances and saturation phenomena.

3. 1 : 2 : 4 NON-LINEAR VIBRATION ABSORBER

To show the use of higher-order internal resonances and saturation phenomena for
structural vibration control, we consider the following three ordinary di!erential equations:
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where u
1

denotes the response of one of the two second-order controllers, u
1

is its natural
angular frequency, and m

1
is its damping ratio. u

2
denotes the response of the other

second-order controller, u
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is its natural angular frequency, and m
2

is its damping ratio.
Moreover, u
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represents one of the modal co-ordinates of a structure, u
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is the modal

frequency, m
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is the modal damping ratio, gN
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are positive or negative gain constants, FM is the amplitude of the external excitation force,
X is the external excitation frequency, X is close to u

4
, u

4
is close to 2u

2
, u

4
is close to 4u
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,

t is the time, and ( ) ),d( )/dt. The design of this 1 : 2 : 4 non-linear vibration absorber was
determined after we studied several higher-order non-linear vibration absorbers. Some of
those vibration absorbers deserve attention and are shown later in section 5.

3.1. PERTURBATION ANALYSIS

We seek a "rst-order approximate solution of equation (5) by using the method of
multiple scales [1] in the form
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where e is a small dimensionless parameter used for book-keeping only; ¹
0
"t, a fast scale

characterizing motions at X and its multiplies; and ¹
1
"et, a slow scale characterizing the

time variation of the amplitudes and phases. To make dampings, non-linearities, and the
primary resonance force appear in the same perturbation equations, we order that FM "eF,
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. Although the

method of multiple scales is well known in the literature, the combination of the four
non-linearities in equation (5) and the ordering scheme used has not been studied by other
researchers. Hence, we show below some steps of the perturbation analysis using the
method of multiple scales.

Substituting equation (6) into equation (5) and equating coe$cients of like powers of e, we
obtain the following:
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are arbitrary functions at this level of approximations, i,J!1, and

cc denotes complex conjugate terms. Substituting equation (9) into equation (8) yields
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Substituting equation (11) into equation (10) and setting the coe$cients of the secular terms
[1] to zero yields the solvability conditions as
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Moreover, it follows from equations (17) and (18) that
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Equation (22) shows that a
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. In other words, even if the

excitation is not at resonance (i.e., p
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Since the natural frequency u
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of the controller can be easily adjusted, theoretically this
control method should also work for non-resonant situations. However, the perturbation
solution is an approximation, and the actual solution may not behave so, especially outside
of the resonance area.
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are just predictions from the perturbation analysis and they need to be veri"ed
experimentally.
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3.2. STABILITY ANALYSIS

To determine the stability of linear and non-linear "xed-point solutions of equations
(13)}(18), we introduce the Cartesian co-ordinates p
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Using equation (26) we reform equations (13)} (18) into
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Because these are "rst-order autonomous ordinary-di!erential equations, the stability of
a particular "xed point with respect to an in"nitesimal disturbance proportional to ejt is
determined by the eigenvalues of the Jacobian matrix of the right-hand sides of equation
(27). A given "xed point is stable if and only if the real parts of all eigenvalues are less than or
equal to zero. If there is a pair of complex conjugate values having positive real parts,
amplitude- and phase-modulated motions are expected [11].

The main interest of this work is to design and investigate the feasibility and e$ciency of
new saturation controllers using higher-order internal resonances. Numerical and
experimental bifurcation and stability analysis of the new saturation controllers are still
under study because they require more e!orts and time. As explained in section 2, the RC
circuit of the PZT sensor is coupled with the DSP board, and hence the stability is a!ected
by the circuit of the DSP board, which is a challenging problem to be solved.

3.3. SATURATION PHENOMENON

Equation (22) shows that a
4

is independent of F (the so-called saturation phenomenon)
and is proportional to 1/g

24
. Moreover, equations (21) and (22) show that the controller
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response amplitude a
2

is also independent of F. This phenomenon is di!erent from the 1 : 2
non-linear vibration absorber (see equation (1)), where the controller response amplitude is

proportional to JF [7].
If g

2
"0 and f

2
"X!2u

2
"0, it follows from equations (22), (17), and (18) that

a
4
"0, a

1
"A

8F

Dg
1
Du2

1
B
1@4

. (28)

It shows that a
1

can be controlled by changing g
1

and is proportional to F1@4. Hence, when
the excitation amplitude F increases, the additional excitation energy is guided to the
controller u

1
instead of the controller u

2
.

It follows from equation (25) that

g
1
u2
1
uR 2
1
"

g
1
a4
1

8 A
X
4B

2
[1!cos(Xt!(/

1
!/

2
#2/

4
))]. (29)

One can see from equations (15) and (16) that, when a
2
O0 and f

2
"0, /

2
"03 (if X(2u

2
)

or 903 (if X"2u
2
) or 1803 (if X'2u

2
). Also, it follows from equations (13) and (14) that,

when a
1
O0, f

1
"0, and g

124
'0, /

4
"03 (if X(4u

1
) or 903 (if X"4u

1
) or 1803 (if

X'4u
1
). Moreover, when a

1
O0, f

1
"0, and g

124
(0, /

4
"1803 (if X(4u

1
) or !903 (if

X"4u
1
) or 03 (if X'4u

1
). Furthermore, it follows from equations (17) and (18) that, if

g
2
"0, g

1
(0, XO4u

1
, and a

4
is small and negligible, /

1
"1803 (if X(2u

2
) or !903 (if

X"2u
2
) or 03 (if X'2u

2
). Moreover, if g

2
"0, g

1
(0, X"4u

1
, and a

4
is small and

negligible, /
1
"03 (if X(2u

2
) or 903 (if X"2u

2
) or 1803 (if X'2u

2
). Hence

/
1
!/

2
#2/

4
"$1803 if g

1
(0, and it follows from equations (29) and (28) that

g
1
u2
1
uR 2
1
"!F!F cosXt, (30)

where X/4 is replaced with u
1
. It shows that g

1
u2
1
uR 2
1
has a harmonic component to cancel the

external excitation force and a static component to make u
4
"!F/u2

4
. This phenomenon is

exactly the same as the saturation phenomenon in the 1 : 2 non-linear vibration absorber.
However, here the controller frequency (i.e., u

1
) is equal to X/4 instead of X/2, and a quartic

term is used instead of a quadratic term.

4. NUMERICAL AND EXPERIMENTAL RESULTS

Figure 2 shows the cantilevered skew plate with the 1 : 2 : 4 non-linear vibration absorber
designed for controlling the "rst-mode vibration of the plate. An attempt to use the plate
velocity measured by the scanning laser vibrometer to provide the required velocity
feedback (see equation (5)) was not successful. The signal from the laser vibrometer is sent
through an analog "lter before it is digitized. Because of the analog "ltering, the phase
di!erence between the velocity signal from the laser vibrometer and the displacement signal
from the PZT sensor is not 903. Hence, we use the numerical time derivative v4 (i.e., uR

4
)

shown in Figure 2 to provide the required velocity feedback from the plate. We note that
there is no "lter used in this vibration absorber because the numerical time derivative "lters
out the constant o!set inherent in the measured voltage due to the interaction between the
PZT sensor and the DSP board. This constant o!set forced us to use a band-pass "lter in
the 1 : 2 vibration absorber, as shown in Figure 1. Although high-frequency noise may be



Figure 2. Experimental set-up for controlling the "rst-mode vibration: (a) the plate with the 1 : 2 : 4 non-linear
vibration absorber, (b) the subsystem &&Controller 1'', and (c) the subsystem &&Controller 2''.
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magni"ed by the numerical time derivative, it does not a!ect this 1 : 2 : 4 vibration absorber
because its frequency is well above those of the controllers. One can follow the procedure
used in deriving equation (4) to obtain from Figure 2 that

uK
1
#u2

1
u
1
"G124]u

1
uR
2
uR
4
, uK

2
#u2

2
u
2
"G24]uR

2
uR
4
,

10)85(uK
4
#0)5028uR

2
#7021u

2
)"

F

FK
[G1]200u2

1
uR 2
1
#FK cos(Xt)]. (31)

Equations (21) and (22) show that setting f
1
"f

2
"0 reduces a

4
. Moreover, it will be shown

in section 5 that, when both g
1

an g
2

are used, g
2

will dominate the control and this 1 : 2 : 4
vibration absorber will behave almost the same as the 1 : 2 vibration absorber. Hence, we
only consider the case that f

1
"f

2
"g

2
"0 in equation (31).

To perform numerical simulation of equation (31) we built the SIMULINK model shown
in Figure 3, where the subsystems &&controller 1'' and &&controller 2'' are those shown in
Figures 2(b) and 2(c). The gain G1 in Figure 3 contains the factor 200 due to the power
ampli"er and the scaling factor 10 of the DSP output. In the numerical simulation, the
ordinary di!erential equation solver selected is the MATLAB "xed-step solver ode4, which
uses a fourth-order Runge}Kutta integration method. The integration step size is 0)005 s.
The parameters used in the SIMULINK solution are also used in performing the real-time
control. For the numerical simulation and experiments the following parameters are chosen



Figure 3. The SIMULINK model for numerical simulation of the "rst-mode control (a) the plate with the
1 : 2 : 4 non-linear vibration absorber, and (b) the subsystem &&Plate''.
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based on the limitations of the PZT patches for actuation and the dSPACE controller
system:

G124"0)5, G24"
300

u
2
u

4

, G1"
!10

u2
1

, FK "10 V,

X"2u
2
"4u

1
, g

2
"f

1
"f

2
"0. (32)

Moreover, the initial conditions are chosen to be u
1
"u

2
"0)1, uR

1
"uR

2
"0, and

u
4
"uR

4
"0.

Figure 4 shows the sensor response u
4

and the controller responses u
1

and u
2

in
controlling the "rst-mode steady-state vibration. The experimental result shown in Figure
4(a) is obtained by exciting the plate using 10 cos(u

4
t) V to the QP10W patch on the

backside of the plate. The controller is turned on about 5 s after data collection is started.
The experimental results agree closely with the numerical results. The transient e!ects in the
experimental sensor response u

4
and controller response u

1
are similar to those in the

numerical responses. The time to reach a steady-state after the controller is activated is
almost the same, and the experimental steady-state values of u

1
and u

4
are the same as the

numerical ones. However, the steady-state controller response u
2

in the experiment is
di!erent from that in the numerical simulation because f

1
"f

2
"0 and X"2u

2
"4u

1
(see equation (32)) and hence a

2
is undetermined and depends on initial conditions, as

explained in section 3.1.



Figure 4. The sensor response u
4

and controller responses u
1

and u
2

in controlling the "rst-mode vibration:
(a) experimental results, and (b) numerical results using equations (31) and (32).
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The force response curves shown in Figure 5 reveal the saturation phenomenon of this
new 1 : 2 : 4 non-linear vibration absorber. The experimental and numerical values of a

4
are

very close to zero and are independent of the external excitation amplitude F. The
perturbation analysis predicts a

4
to be zero, as shown in equation (28). The controller

response amplitude a
1

follows the perturbation solution shown in equation (28). Again the
experimental controller amplitude a

2
in Figure 5 deviates from the numerical one because it

depends on initial conditions. It is di$cult to control the initial conditions because they are
determined by the time that the controllers are activated and the phase of u

4
at that speci"c

time. This also explains why the u
2

in Figure 4(a) is di!erent from that in Figure 4(b). When
a
4
O0 and f

1
O0 and/or XO4u

1
, numerical and experimental results show that the

steady-state value of a
2

is determinant and constant, as predicted by equation (21).
The experimental time traces shown in Figure 6 verify the perturbation prediction shown

in equation (30). It shows that g
1
u2
1
uR 2
1

has a harmonic component to cancel out the external



Figure 5. The numerical and experimental forces response curves. Experiment: ¢, a
1
; ¤, a

2
; n, a

4
. Numerical:

e, a
1
; w, a

2
; q, a

4
. perturbation: *, a

1
; #, a

4
.

Figure 6. The relationship between the controller output g
1
u2
1
uR 2
1
, the excitation force F cos(Xt), and the plate

response u
4
: **, g

1
u2
1
u5 2
1
; } } }, F cos(Xt); } )}, u

4
.
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Figure 7. Numerical simulation of the 1 : 2 : 4 non-linear vibration absorber in controlling the "rst-mode
vibration by using equations (31) and (32) with the controllers being on and o! at: (a) one time sequences, and (b)
another time sequences.
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harmonic excitation and a static component to make u
4
"!F/u2

4
. Using F"10]

0)739"7)39 we obtain u
4
"!0)0011, which is equal to the mean value of u

4
in Figure 6.

Figure 7 shows the robustness of this 1 : 2 : 4 non-linear vibration absorber in controlling
the "rst-mode steady-state vibration. Figures 7(a) and 7(b) show numerical results obtained
using the same parameters but di!erent time sequences for the activation and deactivation
of the controllers. In Figure 7(a), the plate vibration u

4
is always immediately suppressed

after the controllers are activated. When the plate vibration u
4

reaches its steady-state, the
controller responses u

2
and u

1
also settle at their steady-state values. Figure 7(b) shows that

di!erent initial conditions may cause di!erent transient e!ects, but u
4

is always suppressed
to zero and u

1
always settles at the same steady-state value. However, the controller

response u
2

does not settle at the same value because of di!erent initial conditions, as
explained in section 3.1.

Figure 8 shows the experimental veri"cation of the robustness of this 1 : 2 : 4 non-linear
vibration absorber in controlling the "rst-mode steady-state vibrations. Figure 8(a) veri"es



Figure 8. Experimental results of the 1 : 2 : 4 non-linear vibration absorber in controlling the "rst-mode
vibration with the controllers being on and o! at the same time sequences: (a) the "rst run, and (b) the second run.
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the numerical results shown in Figure 7(a). Figure 8(b) was obtained using the same settings
used in Figure 8(a). After collecting data for Figure 8(a) the controller was reset and the
C-code for the model shown in Figure 2 was regenerated in an attempt to repeat and verify
the results in Figure 8(a). However, the controller response u

2
in Figure 8(b) is di!erent from

that in Figure 8(a) because the initial conditions cannot be controlled to be the same.
Figures 7 and 8 show that this 1 : 2 : 4 vibration absorber is more sensitive to initial
conditions than the 1 : 2 vibration absorber.

5. OTHER HIGHER-ORDER NON-LINEAR VIBRATION ABSORBERS

With the understanding of the 1 : 2 non-linear vibration absorber [7, 8], we designed and
examined several vibration absorbers using di!erent orders of non-linearities and internal
resonances before the design of the 1 : 2 : 4 non-linear vibration absorber shown in equation
(5). Some of these vibration absorbers deserve attention.



Figure 9. Numerical simulation of the 1 : 3 vibration absorber shown in equation (33) with u
1

activated at
t"5 s: (a) u

1
, and (b) u

3
.

814 P. F. PAI E¹ A¸.
First, we studied a 1 : 3 vibration absorber, which was designed to be

uK
1
#2f

1
u

1
uR
1
#u2

1
u
1
"g

13
u2
1
u
3
,

uK
3
#2f

3
u

3
uR
3
#u2

3
u
3
"g

1
u3
1
#F cos(Xt). (33)

Figure 9 shows the responses obtained using g
13
"300, g

1
"7960, F"7)96, f

1
"0,

f
3
"0)0025, and X"u

3
"3u

1
"82)5 rad/s. Because the control force g

1
u3
1

does not
provide a constant term as a 1 : 2 vibration absorber does (see equation (30)), the transient
e!ect can be signi"cant and depends on initial conditions, which are determined by the
activation time of the the controller.

To reduce the controlled amplitude of u
3

in Figure 9 we designed the following vibration
absorber:

uK
1
#2f

1
u

1
uR
1
#u2

1
u
1
"g

13
u
1
uR
1
uR
3
,

uK
3
#2f

3
u

3
uR
3
#u2

3
u
3
"g

1
u3
1
#F cos(Xt). (34)

The response obtained using g
13
"300/u

1
u

3
, g

1
"7960, F"7)96, f

1
"0, f

3
"0)0025, and

X"u
3
"3u

1
"82)5 rad/s shows that the use of velocity feedback uR

3
reduces the

controlled vibration amplitude of u
3
. In an intend to reduce the transient period in Figure 9,

a quadratic term was added and g
1
(u3

1
#u2

1
) was used in equation (34). However, it did not

work well because u2
1

adds another excitation harmonic to the system. Hence, we consider
the following 1 : 4 vibration absorber:

uK
1
#2f

1
u

1
uR
1
#u2

1
u
1
"g

14
u2
1
uR
1
uR
4
,

uK
4
#2f

4
u

4
uR
4
#u2

4
u
4
"g

1
u4
1
#F cos(Xt). (35)



Figure 10. Numerical simulation of the 1 : 4 vibration absorber shown in equation (35) with u
1
(0)"0)1: (a) u

1
,

and (b) u
4
.
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Figure 10 shows the response obtained using g
14
"2, g

1
"2000, F"7)96, f

1
"0,

f
4
"0)0025, and X"u

4
"4u

1
"82)5 rad/s. Figures 10(a) and 10(b) show that, if the initial

condition u
1
(0) is set to be too small, it takes a long time for u

1
to grow to suppress u

4
because of the use of u4

1
. Because u4

1
contains a 2u

1
!harmonic, it causes the non-zero

amplitude of u
4
. Hence, we improve this vibration absorber as

uK
1
#2f

1
u

1
uR
1
#u2

1
u
1
"g

14
u2
1
uR
1
uR
4
,

uK
4
#2f

4
u

4
uR
4
#u2

4
u
4
"g

1
u2
1
uR 2
1
#F cos(Xt). (36)

The response obtained using g
14
"2, g

1
"!2000/u2

1
, F"7)96, f

1
"0, f

4
"0)0025, and

X"u
4
"4u

1
"82)5 rad/s show that the use of u2

1
uR 2
1

(instead of u4
1
) reduces u

4
. However,

the problem of having a long transient period when u
1
(0) is small still exists. Hence, we

design the following 1 : 2 : 4 vibration absorber:

uK
1
#2f

1
u

1
uR
1
#u2

1
u
1
"g

124
u
1
uR
2
uR
4
, uK

2
#2f

2
u

2
uR
2
#u2

2
u
2
"g

24
uR
2
uR
4
,

uKK
4
#2f

4
u

4
uR
4
#u2

4
u
4
"g

1
u2
1
uR 2
1
#F cos(Xt). (37)

Figure 11 shows the responses obtained using g
124

"2, g
24
"300/u

2
u

4
, g

1
"!2000/u2

1
,

F"7)96, f
1
"f

2
"0, f

4
"0)0025, and X"u

4
"2u

2
"4u

1
"82)5 rad/s. One can see

from Figure 11(a,c) and Figures 10(a,b) that the inclusion of the controller u
2

signi"cantly
reduces the transient period. Moreover, Figure 11(d) shows the static component of u

4
caused by the static force predicted by the perturbation solution shown in equation (30).

To understand the in#uence of u
1

on u
2

and u
4
, we consider

uK
1
#2f

1
u

1
uR
1
#u2

1
u
1
"g

124
u
1
uR
2
uR
4
, uK

2
#2f

2
u

2
uR
2
#u2

2
u
2
"g

24
uR
2
uR
4
,

uKK
4
#2f

4
u

4
uR
4
#u2

4
u
4
"g

2
u2
2
#F cos(Xt). (38)



Figure 11. Numerical simulation of the 1 : 2 : 4 vibration absorber shown in equation (37): (a) u
1
, (b) u

2
, (c) u

4
,

and (d) u
4
.
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The response obtained using g
124

"2, g
24
"300/u

2
u

4
, g

2
"7960, F"7)96, f

1
"0)002,

f
2
"0, f

4
"0)0025, and X"u

4
"2u

2
"4u

1
"82)5 rad/s shows that u

2
is not in#uenced

by u
1

and u
1

dies out because f
1
O0 and u

1
does not directly interact with u

2
or u

4
.

If g
2
u2
2

is added to equation (37) as shown in equation (5), the response obtained using
g
124

"2, g
24
"300/u

2
u

4
, g

1
"!2000/u2

1
, g

2
"7960, F"7)96, f

1
"f

2
"0, f

4
"0)0025,

and X"u
4
"2u

2
"4u

1
"82)5 rad/s reveals that the response is mainly controlled by u

2
because u

2
grows faster than u

1
after they are activated.

6. CONCLUDING REMARKS

The use of PZT patches and higher-order saturation phenomena to suppress the
steady-state resonant vibrations of a cantilevered skew aluminium plate is shown by
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perturbation analysis, numerical simulation, and experiments. Several new non-linear
vibration absorbers are studied. A new 1 : 2 : 4 non-linear vibration absorber is designed and
examined in detail. Numerical and experimental results show the feasibility and robustness
of this new non-linear vibration absorber.
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